前 言

本标准等同采用 ISO 7904-2:1995《滑动轴承 符号 第2部分:应用符号》。

本标准在技术内容上与 ISO 7904-2:1995 无差异,只做了一些编辑性的修改。

本标准由国家机械工业局提出。

本标准由全国滑动轴承标准化技术委员会归口。

本标准起草单位:上海交通大学、中国航天标准化研究所、机械科学研究院。

本标准主要起草人:李柱国、查朝晖、邓跃。

ISO 前言

ISO(国际标准化组织)是一个世界范围的国家标准团体(ISO 成员国)组成的联合组织。国际标准的制定工作是通过 ISO 各技术委员会进行的。每个成员国如对某一个技术委员会所进行的项目感兴趣时,有权参加该委员会的工作。与 ISO 有联系的国际组织、政府或非政府机构都可以参加 ISO 的工作。ISO 与国际电工技术委员会(IEC)在所有电工技术标准化方面密切合作。

技术委员会采用的国际标准草案需送交给各成员国投票表决。国际标准的正式出版至少需要 75% 的成员国投票赞成。

国际标准 ISO 7904-2 是由 ISO/TC 123 滑动轴承技术委员会制定的。

ISO 7904 在"滑动轴承 符号"的总标题下,由下列部分组成:

- ——第1部分:基本符号
- ——第2部分:应用符号

中华人民共和国国家标准

滑动轴承 应用符号

GB/T 18327. 2—2001 **idt ISO** 7904-2:1995

Plain bearings—Applications

1 范围

本标准规定了在滑动轴承计算、设计、试验中应用的符号。

本标准根据 GB/T 18327.1《滑动轴承 基本符号》中滑动轴承基本符号体系和附加符号(上、下标)组合成滑动轴承实际应用所必须的符号。根据需要,实际应用符号可按此组合规律增加新符号。

本标准定义的符号适用于滑动轴承的计算、设计、制造和试验。

2 引用标准

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB/T 18327.1—2001 滑动轴承 基本符号(idt ISO 7904-1:1995)

3 符号与定义

3.1 符号(罗马字母)

りっくグラオ	- 中/
\boldsymbol{A}	热辐射表面积(轴承座);断裂面积
A_{lan}	表面积
A_{lan}^{*}	相对表面积
A_{P}	油穴面积(油槽面积;油腔面积)
$A_{\mathtt{S}}$	截面积
а	距离;加速度;散热系数
$a_{\mathrm{F}}^{\;\star}$	油楔进口处与回转中心之间的距离
$a_{ extbf{F}}$	油楔进口处与回转中心之间的相对距离
$a_{\mathtt{M}}$	轴承支承
В	轴承有效宽度;圆形可倾瓦块直径
B *	相对轴承宽度
$B_{\mathtt{H}}$	轴承座宽度
$B_{ m tot}$	轴承总宽度
b_{ax}	轴向出口宽度
b_{c}	周向出口宽度
$b_{\mathtt{G}}$	油槽宽度
$b_{\mathtt{P}}$	油穴宽度
C	间隙;浓度;倒角
C^*	相对轴承间隙
	Alan Alan Alan Alan AP AS a aF aF aM B Btot bax bc bG C

C_B 多油楔或可倾瓦块径向轴承半径间隙

 $C_{D,\text{eff}}$ 实际轴承直径间隙

 $C_{D,\max}$ C_D 的最大值 $C_{D,\min}$ C_D 的最小值

 C_{man} 多油楔径向轴承间隙公差范围 C_{max} 多油楔径向轴承间隙最大值 C_{min} 多油楔径向轴承间隙最小值

 C_R 轴承半径间隙 \overline{C}_R 化 C_R 的平均值

 $C_{R,eff}$ 实际轴承半径间隙

 $C_{R,\text{max}}$ C_R 的最大值 $C_{R,\text{min}}$ C_R 的最小值

 C_{wed} 可倾瓦块轴承锲形深度(止推轴承间隙)

 c
 比热容; 刚度系数

 c₁
 轴的抗弯刚度

 c_p 比定压热容(p) 油膜压力稳定)

D 轴承内径

D_B 多油锲和可倾瓦块径向轴承的两倍油叶或瓦块半径

 D_{B,max}
 D_B 的最大值

 D_{B,min}
 D_B 的最小值

 D_H
 轴承座直径

D_i 止推轴承支承环内径

D_J 轴径

 D_{J,max}
 D_J 的最大值

 D_{J,min}
 D_J 的最小值

D。 止推轴承支承环外径

 d
 直径;阻尼系数

 dop
 毛细管直径

 dL
 出油孔直径

 E
 弹性模量

 E*
 相对弹性模量

 E_B
 轴承材料的弹性模量

 E_J
 轴转动表面的弹性模量

Ersl 综合弹性模量

e 偏心距

e* 偏心率(见 e)

e_B 多油叶和可倾瓦块径向轴承滑动表面偏心距

e_r 多油叶径向轴承载荷方向轴的偏心距

F 轴承载荷

F* 相对轴承载荷(轴承载荷参量)

F_E 弹流(EHD)轴承载荷

F^{*} 弹流(EHD)相对轴承载荷

 $F_{E,tr}$ 弹流(EHD)下;边界润滑极限状态轴承载荷

 $F_{E,tr}^*$ 弹流(EHD)下;边界润滑极限状态相对轴承载荷

F* 相对实际轴承载荷

 $F_{\mathbf{f}}$ 摩擦力

F* 相对摩擦力

F_n 正压力(与滑动表面垂直)

F_{rot} 由轴旋转(锲效应)效应承受的载荷部分

F_{sc} 静载荷

F_{sq} 由挤压效应承受的轴承载荷部分

 F_{st} 起动时轴承载荷 $(N \approx 0)$ F_{stp} 停止时轴承载荷 $(N \approx 0)$

 F_{tr} 边界润滑极限状态轴承载荷(不计 EHD 影响)

 F_{tt}^{*} 边界润滑极限状态轴承载荷无因次参量(不计 EHD 影响)

 f
 摩擦因数;函数符号

 f*
 摩擦因数无因次参量

 f_h
 流体摩擦因数(在边界润滑瓦内)

 f_{min}
 在 Stribeck 曲线最小值时的摩擦因数

f_s 固体摩擦因数

ft 转变到边界润滑时的摩擦因数

 G
 剪切模量

 g
 重力加速度

H 高度

 H_H
 轴承座高度

 HB
 布氏硬度

 HRB
 洛氏硬度(球)

 HRC
 洛氏硬度(锥)

 HV
 维氏硬度

h 局部润滑剂膜厚度(膜厚)h* 相对润滑剂膜厚度(相对膜厚)

 hen
 入口处润滑剂膜厚

 hex
 出口处润滑剂膜厚

h_G 油槽深度

 h_{im}
 最小许可润滑剂膜厚

 b_{im}
 最小许可相对润滑剂膜厚

h_{lim,tr} 在转变到边界润滑时最小许可润滑剂膜厚

h 在转变到边界润滑时最小相对许可润滑剂膜厚

 h_{min}
 最小润滑剂膜厚

 h_{min}
 相对最小润滑剂膜厚

hmin,tr 在转变到边界润滑时最小润滑剂膜厚 **h**min,tr 在转变到边界润滑时最小相对润滑剂膜厚

油穴深度 h_{p}

 h_{wav} 滑动表面波度

滑动表面实际波度 $h_{\mathrm{wav.eff}}$

最大许可的滑动表面实际波度 $h_{\rm wav,eff,lim}$

 h_0 ε=0 时局部润滑剂膜厚

 h_0^* ε=0 时局部相对润滑剂膜厚

ε=0 时最大润滑剂膜厚 $h_{0,\max}$

 $h_{0,\max}^*$ 润滑剂膜厚比($\varepsilon=0$ 时相对最大润滑剂膜厚)

 K_{w} 磨损系数 热传递系数 k

k * 热传递系数无因次参量

外部热传递系数(参阅面积 A) k_A

内部热传递系数(油膜) k_{i}

长度;滑动长度;周向长度(止推片) \boldsymbol{L}

 $L_{\mathtt{H}}$ 轴承座长度

轴向支承面长度 l_{ax} $l_{\rm c}$ 周向支承面长度 $l_{
m cp}$ 毛细作用长度

油槽长度 $l_{\mathtt{G}}$ 油穴长度 $l_{\rm p}$ $l_{
m wed}$ 锲形长度

M 力矩

加载力矩 M_F 摩擦力矩 $M_{\rm f}$

m质量

旋转频率(单位时间转数) N N^* 旋转频率无因次参量

轴承的旋转频率 $N_{\rm B}$

刚性支承轴的临界旋转频率 $N_{\rm cr}$

 N_{F} 轴承载荷旋转频率 N_{J} 轴的旋转频率

 $N_{
m lim,tr}$ 最大许可转换旋转频率

Stribeck 曲线摩擦最小值处旋转频率 N_{min} 安装在滑动轴承内的轴共振旋转频率 $N_{
m rsn}$

转换旋转频率 $N_{
m tr}$ $P_{\rm cl}$ 冷却容量 摩擦功率 $P_{\mathbf{f}}$ P_{p} 输出功率

热流量 $P_{
m th,amb}$ 对周围环境的热流量 基于摩擦功的热流量 $P_{\rm th,f}$

润滑剂热流量 $P_{\rm th,L}$

 $P_{\rm th}$

$P_{\rm tot}$	总功率($P_p + P_t$)
P * tot	总功率无因次参量
p	局部润滑剂膜压力
\overline{p}	比载荷,即投影面积单位载荷
$\overline{p}_{ ext{dyn}}$	动压比载荷
p _{en}	润滑剂注入压力
p_{en}^*	润滑剂注入压力无因次参量
$p_{ m lim}$	最大许可润滑剂膜压力
\overline{p}_{\lim}	最大许可轴承比载荷
p _{max}	最大润滑剂膜压力
p * max	最大润滑剂膜压力无因次参量
<i>p</i> _p	油穴中润滑剂压力
$\overline{p}_{ m sc}$	静比载荷
$\overline{p}_{ m st}$	起动时比载荷(N≈0)
$\overline{p}_{ m stp}$	停止时比载荷(N≈0)
Q	润滑剂流量;流量速率
Q *	润滑剂流量无因次参量
$Q_{ m c1}$	冷却容量
Q_{p}	基于供油压力的润滑剂流量
Q_p^*	基于供油压力的润滑剂流量无因次参量
Q_0	基准润滑剂流量
Q_1	润滑间隙(周向)入口处润滑剂流量
Q_1^*	润滑间隙(周向)入口处润滑剂流量无因次参量
Q_2	润滑间隙(周向)出口处润滑剂流量
Q_2^*	润滑间隙(周向)出口处润滑剂流量无因次参量
Q_3	由于流体动压形成而需要的润滑剂流量
Q_3^*	由于流体动压形成而需要的润滑剂流量无因次参量
R	轴颈轴承内孔半径
Ra	表面粗糙度 C.L.A 平均值
Ra_{B}	轴承滑动表面粗糙度 C.L.A 平均值
$Ra_{\mathtt{J}}$	轴颈滑动表面粗糙度 C.L.A 平均值
R_{B}	多油锲轴颈轴承油叶和可倾瓦块轴颈轴承瓦块的半径
$R_{ ext{cp}}$	静压轴承毛细管流阻
$R_{ m J}$	轴颈半径 整压缺乏独自这四
$R_{\mathrm{lan,ax}}$	静压轴承轴向流阻
$R_{\mathrm{lan,c}}$	静压轴承周向流阻
R_{p}	静压轴承油穴流阻 表面平均收公宜度
R_z	表面平均峰谷高度 如承丰而平均峰公宮度
$R_{z,B}$	轴承表面平均峰谷高度 轴颈表面平均峰谷高度
$R_{z, J}$ Re	描述 電送数
Re _{cr}	临界雷诺数
10 Ccr	川1川1下田 41 数

 $Re_{
m cr}$

可重复度 r S_{F} 防备因过载导致边界润滑的安全因数 防备因过低旋转频率导致边界润滑的安全因数 S_N 索莫菲尔德数 So So_{rot} 旋转索莫菲尔德数 So_{sq} 挤压索莫菲尔德数 过渡到边界润滑时索莫菲尔德数 So_{tr} 壁厚 s转子共振振幅 $S_{A,rsn}$ T温度 环境温度 $T_{
m amb}$ T_{B} 轴承温度 $T_{
m \,eff}$ 润滑剂实际温度 $T_{
m en}$ 轴承入口处润滑剂温度 $T_{
m ex}$ 轴承出口处润滑剂温度 T_{g} 气压计温度(塑料试验) $T_{
m J}$ 轴颈温度 $T_{\mathtt{L}}$ 润滑剂温度 $T_{
m lim}$ 最高允许轴承温度 T_1 槽穴中润滑剂温度 T_2 轴承间隙出口处润滑剂的温度 时间 \boldsymbol{U} 圆周速度;滑动速度 U_{B} 轴承圆周速度 $U_{\mathbf{J}}$ 轴颈圆周速度 $U_{
m lim,tr}$ 允许的最高过渡圆周速度 $\overline{U}_{\mathbf{R}}$ 静压轴承预先设定的平均流速 $U_{
m \, tr}$ 过渡圆周速度 x 方向速度分量;x 方向变形量 uV容积;y 方向表面速度;位移速度 VG 黏度等级 VI 黏度指数 y 方向速度分量;y 方向变形量 \boldsymbol{v} W z 方向表面速度;功 z 方向速度分量;z 方向变形量 \boldsymbol{w} 轴承座圆周介质速度 $w_{
m amb}$ 平行于滑动表面周向坐标轴 \boldsymbol{x} 垂直于滑动表面的坐标轴 y 滑动面数(止推片)或每个轴承的槽数;断裂面颈缩 \boldsymbol{Z} 平行于滑动表面,垂直于圆周方向的坐标轴(轴颈轴承为轴向,止推轴承为垂直于

3.2 符号(希腊字母)

GB/T 18327. 2-2001 传热系数 α 线性热膨胀系数 α_l 轴承的线性热膨胀系数 $\alpha_{l,B}$ 轴颈的线性热膨胀系数 $\alpha_{l,J}$ 体积热膨胀系数 α_V 偏位角(相对于载荷方向的轴偏心位置角),温黏指数 β 载荷方向与最小润滑剂膜厚位置间的夹角 $eta_{
m h,min}$ 轴承载荷位置角(垂直轴承载荷方向 γ=0) y 偏差,拉普拉斯算符 Δ δ 最小润滑锲形间隙位置角 轴承偏位角(轴承的角度偏位) δ_{B} 轴颈偏位角(轴颈的角度偏位) $\delta_{
m J}$ 偏心率(见e*),相对偏心距 8 流体阻尼系数 ζ 润滑剂动力黏度 η 间隙缝中润滑剂平均动力黏度 $\bar{\eta}$ 润滑剂实际动力黏度 $\eta_{
m eff}$ 阻尼比 к 热导率 λ 轴承相对刚度 ш 润滑剂运动黏度,泊松比 ν 轴承泊松比 v_{B} 轴颈泊松比 $v_{\rm J}$ 静压轴承节流比 ξ П 积,常量 Ludolf's 数,圆周率(π=3.1415926…) π 密度 ρ 应力,标准偏差 σ 剪切应力 τ Φ 滑动面利用率 圆周方向角度坐标 φ 相对轴承间隙(见 C^*) ψ $\overline{\psi}$ 平均相对轴承间隙 实际相对轴承间隙 $\psi_{
m eff}$ 多油叶轴颈轴承相对制造间隙 $\psi_{ ext{man}}$ **♥**最大值 ψ_{\max} **♥**最小值 ψ_{\min} 20 ℃时轴颈轴承相对轴承间隙 ψ_{20}

轴承滑动表面包角

角速度($\omega=2\pi N$)

流体动压角速度

轴承角速度

轴颈角速度

相对角速度

 Ω

ω

 $\omega_{\mathbf{B}}$

 $\omega_{\rm h}$

ω_I

 $\omega_{\rm rel}$